

Teletubbies Home

Report

Pierina Lopez

IOT Essentials

Academic Year 2021-2022

Campus Geel, Kleinhoefstraat 4, BE-2440 Geel

3

Table of Contents
1. Description 4

1.1. Hardware Materials 4
1.2. Software and Platforms 9
1.3. Setup Procedure: 10

2. Remote.it 15

3. How to use: 16

4. References: 16

5. Code 16
5.1. Code for funtions: allforone.py 16
5.2. Display code: lcd.py 22
5.3. Code for the web page: web.py 25
5.4. Template for web page: camera.html 27
5.5. Code for main program: main.py 28

6. Additional Set up 29

7. Pictures of project 31

4

Teletubbies Home

1. Description

With the Teletubbies home project, it will be posibble to feed the fishes,

turn on and off a lamp, fill the aquarium if is needed, mesure the depth,

display infotmation in a LCD, displaying information in the UBEAC

platform and live Stream the aquarium from anypart of the world.

1.1. Hardware Materials

- Rasberry pi 4

- Raspberry pi power supply

- Rpi Camera v2 8 megapixels

5

- Case for camera

- Case for raspberry

- USB Cable, Tyoe A to type C

- 6 1k ohm resistors

- 3 220 ohm resistors

6

- 1 4 or 2 channel 5v relay board

- 1 stepper motor + driver

- 1 ultrasonic module

- Lcd display(nokia 5110 lcd)

7

- Picobbler

- 2 breadboards

- 16 Gb micro SD

- 4 push buttons

- Wires

8

- 1 pump 12v/24v

- Alligator clip to breadboard

- 1 power supply module

- 1 red led

- 1 yellow led

9

- 1 green led

- 1 lamp

- Electrical Insulation Tape

- Screwdriver

1.2. Software and Platforms

- Open CV

- Python 3.7+ & Flask

- Numpy

- Adafruit

- Remote.it

10

1.3. Setup Procedure:

- Setup Raspberry pi with “Pi Imager” select the Operating System

“Raspberry Pi OS (Legacy)”

- Connect Rpi Camera to Raspberry pi

11

- Connect picobbler to breadboard, connect 2 1k OHM resistor as

shown in the graphic:

o VCC to 5 v

o Trig to GPIO 16 (BCM)

o Echo to resitor and to GPIO 26(BCM) as shown in the

graphic

o Gnd to resistor and to Gnd

- Connect for buttons and for 1k ohm resistors as shown in the

graphic:

o First button: GPIO 17 / for the pump

o Second button: GPIO 27/ for the lamp

o Third button: GPIO 22/ for the feeding to the right

o Fourth button: GPIO 4/for the feeding to the left

12

- Connect LCD as shown in graphic:

o VCC to VCC

o GROUND TO GROUND

o DC to Gpio 23

o Reset to gpio 24

o Din to Mosi

o CLK to SCLK

o CE to CE1

- Connect the led lights as shown in the graphic:

o Connect 220 resistor to breadboard as shown

o Green led to GPIO 13

o Yellow led to GPIO 25

o Red led to GPIO 18

13

- Connect pump and lamp as shown in the graphic:

o Relay board first channel to GPIO 6 for the pump

o Relay board second channel to GPIO 5 for the lamp

- Connect Stepper Motor as shown in the graphic:

o In1: GPIO 12

o In2: GPIO 21

o In3: GPIO 20

o In4: GPIO 19

14

- Complete graphic

-

15

- Install and use Putty for the following part

✓ Upgrade python to 3.8

✓ See what version of python you have with : python -V

Upgrade with : https://itheo.tech/install-python-38-on-a-

raspberry-pi

Install one at a time:

✓ sudo apt-get update

✓ sudo apt-get upgrade

✓ sudo apt-get install build-essential

✓ sudo apt-get install cmake

✓ sudo apt-get install gfortran

✓ sudo apt-get install git

✓ sudo apt-get install wget

✓ sudo apt-get install curl

✓ sudo apt-get install graphicsmagick

✓ sudo apt-get install libgraphicsmagick1-dev

✓ sudo apt-get install libatlas-base-dev

✓ sudo apt-get install libavcodec-dev

✓ sudo apt-get install libavformat-dev

✓ sudo apt-get install libboost-all-dev

✓ sudo apt-get install libgtk2.0-dev

✓ sudo apt-get install libjpeg-dev

✓ sudo apt-get install liblapack-dev

✓ sudo apt-get install libswscale-dev

✓ sudo apt-get install pkg-config

✓ sudo apt-get install python3-dev

✓ sudo apt-get install python3-numpy

✓ sudo apt-get install python3-pip

✓ sudo apt-get install zip

✓ sudo apt-get clean

- Install the following:

✓ sudo apt-get install python3-picamera

✓ sudo pip3 install --upgrade picamera[array]

- Install supporting dlib libraries:

✓ pip3 install numpy

✓ pip3 install scikit-image

✓ sudo apt-get install python3-scipy

✓ sudo apt-get install libatlas-base-dev

✓ sudo apt-get install libjasper-dev

✓ sudo apt-get install libqtgui4

✓ sudo apt-get install python3-pyqt5

✓ sudo apt install libqt4-test

✓ pip3 install opencv-python==3.4.6.27

2. Remote.it

To be able to see the live stream of the rpi camera, wi will need to set up

an account to remote.it

o Install remote.it in to the raspberry pi

▪ Sudo apt install remoteit

o Open remote.it in the browser

▪ Create an account

16

▪ Register your raspberry

▪ Add a new service

• Service name: camera

• Service port:5000

• save

3. How to use:

o To be able to use the program it need to be in the same directory

like this:

▪ Main directory: TeletubiesWeb

• Second directory: templates

o In tamplates: camera.html

• In TeletubbiesWeb:

o Allforone.py

o Lcd.py

o Main.py

o Web.py

o Only need to run Main.py

4. References:

- https://www.youtube.com/watch?v=zfBHD4v8hD0

- https://www.youtube.com/watch?v=mQNJpWkdmbc

- https://www.youtube.com/watch?v=DOaDnYj3vfI

- https://www.youtube.com/watch?v=i9mJzdLYsVo

5. Code

5.1. Code for funtions: allforone.py

#import libraries

import requests

import RPi.GPIO as GPIO

import time

import datetime

#funtion for the pump

def pumpwater():

 #turn off warnings

 GPIO.setwarnings(False)

 #set location mode

 GPIO.setmode(GPIO.BCM)

 #Pump output

 GPIO.setup(6, GPIO.OUT)

 GPIO.output(6, True)

 #sensor output and input

 GPIO.setup(16, GPIO.OUT)

 GPIO.setup(26, GPIO.IN)

 #Pump Button

 GPIO.setup(17, GPIO.IN)

17

 #GREEN LED

 GPIO.setup(13, GPIO.OUT)

 #YELLOW LED

 GPIO.setup(25, GPIO.OUT)

 #RED LED

 GPIO.setup(18, GPIO.OUT)

 try:

 #infinite loop

 while True:

 #measure the distance

 #send a 10 µs pulse with the TRIG-pin

 GPIO.output(16, GPIO.HIGH)

 time.sleep(0.00001)

 GPIO.output(16, GPIO.LOW)

 #Loop to record the last timestamp before the signal

reaches the receiver

 while (GPIO.input(26)== GPIO.LOW):

 timestart = time.time()

 #register the last timestamp at which the receiver detects

the signal

 while (GPIO.input(26)== GPIO.HIGH):

 timeend = time.time()

 #calculate time difference between the timestamps

 totaltime = timeend - timestart

 #calculate the difference and multiply with 17000

 depth = totaltime * 17000

 depth = round(depth, 2)

 #create condition, if depth is less than 4 cm and

button is not pressed

 if depth < 4 and GPIO.input(17)==1:

 #only green led on

 GPIO.output(13, 1)

 GPIO.output(25, 0)

 GPIO.output(18, 0)

 time.sleep(0.1)

 print("Depth is", depth)

 #pump is off

 GPIO.output(6, 1)

 time.sleep(1)

 #condition if depth is less then 4.5 cm and button is not

pressed

 elif depth < 4.5 and GPIO.input(17)==1:

 #only yellow led on

18

 GPIO.output(13, 0)

 GPIO.output(25, 1)

 GPIO.output(18, 0)

 time.sleep(0.1)

 print("Depth is", depth)

 #pump off

 GPIO.output(6, 1)

 time.sleep(1)

 #condition if depth is more than 5 cm or button is

pressed

 elif depth > 5 or GPIO.input(17)==0:

 #only red led on

 GPIO.output(13, 0)

 GPIO.output(25, 0)

 GPIO.output(18, 1)

 time.sleep(0.1)

 print("Depth is", depth)

 #pump is on

 GPIO.output(6, 0)

 time.sleep(1)

 finally:

 GPIO.cleanup()

#funtion for feeding

def feeding():

 #turn off warnings

 GPIO.setwarnings(False)

 #set location mode

 GPIO.setmode(GPIO.BCM)

 #button to the left

 bl = 22

 #button to the right

 br = 4

 #set buttons as input

 GPIO.setup(bl, GPIO.IN)

 GPIO.setup(br, GPIO.IN)

 #sequence for button to the right

 CPinR = [12,21,20,19]

 #8 steps sequence

 seq1 = [[1,0,0,1],

 [1,1,0,0],

 [0,1,1,0],

 [0,0,1,1],

 [1,0,0,1],

 [1,1,0,0],

 [0,1,1,0],

19

 [0,0,1,1]]

 #sequence for button to the left

 CPinL = [19,20,21,12]

 #8 steps sequence

 seq2 = [[1,0,0,1],

 [1,1,0,0],

 [0,1,1,0],

 [0,0,1,1],

 [1,0,0,1],

 [1,1,0,0],

 [0,1,1,0],

 [0,0,1,1]]

 try:

 while True:

 #if button "bl" is pressed

 if GPIO.input(bl)==0:

 #set pin to out and low

 for pin in CPinL :

 GPIO.setup(pin, GPIO.OUT)

 GPIO.output(pin, 0)

 #for loop for the rotation

 for i in range (1):

 for singlestep in range(8):

 for pin in range(4):

 GPIO.output(CPinL[pin],

seq1[halfstep][pin])

 time.sleep(0.01)

 #if button "br" is pressed

 elif GPIO.input(br)==0:

 #set pin to out and low

 for pin in CPinR:

 GPIO.setup(pin, GPIO.OUT)

 GPIO.output(pin, 0)

 #for loop for the rotation

 for i in range (1):

 for singlestep in range(8):

 for pin in range(4):

 GPIO.output(CPinR[pin],

seq2[halfstep][pin])

 time.sleep(0.01)

 else:

 for pin in CPinL:

 GPIO.setup(pin, GPIO.OUT)

 GPIO.output(pin, 0)

 finally:

 GPIO.cleanup()

20

#lamp funtion

def lamp():

 #set location mode

 GPIO.setmode(GPIO.BCM)

 #turn off warnings

 GPIO.setwarnings(False)

 #set button as input

 GPIO.setup(27, GPIO.IN)

 #set lamp to output

 GPIO.setup(5, GPIO.OUT)

 #set lamp output to false or low

 GPIO.output(5, False)

 #variable for button state as false

 BS1=False

 try:

 #funtion to recognize if lamp is on or off

 def switch(ev=None):

 nonlocal BS1

 BS1 = not BS1

 if BS1 == True:

 GPIO.output(5, GPIO.HIGH)

 else:

 GPIO.output(5, GPIO.LOW)

 #funtion to change the state of the lamp with button

 def button():

 GPIO.add_event_detect(27, GPIO.FALLING, callback = switch,

bouncetime=300)

 #funtion for the while True

 def wait():

 while True:

 time.sleep(1)

 #starting funtions

 button()

 wait()

 finally:

 GPIO.cleanup()

#funtion to share information to UBEAC

def status():

 #set location mode

 GPIO.setmode(GPIO.BCM)

21

 GPIO.setwarnings(False)

 #sensor output and input

 GPIO.setup(16, GPIO.OUT)

 GPIO.setup(26, GPIO.IN)

 #define actuators GPIOs

 lamp = 5

 pump = 6

 #initialize GPIO status variables

 lampSts = 1

 pumpSts = 1

 # Define pins as output

 GPIO.setup(lamp, GPIO.OUT)

 GPIO.setup(pump, GPIO.OUT)

 # turn pins OFF

 GPIO.output(lamp, GPIO.HIGH)

 GPIO.output(pump, GPIO.HIGH)

 #SET URL AND UID PROVIDE FROM UBEAC

 url = "http://itproject.hub.ubeac.io/iotpierina"

 uid = "iotPierina"

 def readdepth():

 #measure the distance

 #send a 10 µs pulse with the TRIG-pin

 GPIO.output(16, GPIO.HIGH)

 time.sleep(0.00001)

 GPIO.output(16, GPIO.LOW)

 #Loop to record the last timestamp before the signal reaches

the receiver

 while (GPIO.input(26)== GPIO.LOW):

 timestart = time.time()

 #register the last timestamp at which the receiver detects the

signal

 while (GPIO.input(26)== GPIO.HIGH):

 timeend = time.time()

 #calculate time difference between the timestamps

 totaltime = timeend - timestart

 #calculate the difference and multiply with 17000

 depth = totaltime * 17000

 depth = round(depth, 2)

 return depth

 def readlamp():

 while True:

22

 # Read Sensors Status

 lampSts = GPIO.input(lamp)

 return lampSts

 def readpump():

 while True:

 # Read Sensors Status

 pumpSts = GPIO.input(pump)

 return pumpSts

 #endless loop for the reading data

 while True:

 pumpdata=readpump()

 depthdata=readdepth()

 lampdata=readlamp()

 data={

 "id": uid,

 "sensors":[

 {

 'id': 'lamp Status',

 'data': lampdata

 },

 {

 'id': 'Depth',

 'data': depthdata

 },

 {

 'id': 'pump Status',

 'data': pumpdata

 }]

 }

 r = requests.post(url, verify=False, json = data)

 time.sleep(1)

5.2. Display code: lcd.py

def lcd():

 #import libraries

 import time

 import cgitb

 from os import read #cgitb.enable()

 import spidev

 import busio

 import digitalio

 import board

 import adafruit_pcd8544

 from adafruit_bus_device.spi_device import SPIDevice

 from PIL import Image

23

 from PIL import ImageDraw

 from PIL import ImageFont

 import datetime

 import RPi.GPIO as GPIO

 #set location mode

 GPIO.setmode(GPIO.BCM)

 #turn off warnings

 GPIO.setwarnings(False)

 #variable for the lamp pin

 lamp = 5

 #set lamp pin to output and high

 GPIO.setup(lamp, GPIO.OUT)

 GPIO.output(lamp, GPIO.HIGH)

 #initialize GPIO status variables

 lampSts = 1

 # Initialize SPI bus

 spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO)

 cs0 = digitalio.DigitalInOut(board.CE0)

 #funtion for countdown to feeding time

 def countdown():

 def dateDiffInSeconds(date1, date2):

 timedelta = date2 - date1

 return timedelta.seconds

 def daysHoursMinutesSecondsFromSeconds(seconds):

 minutes, seconds = divmod(seconds, 60)

 hours, minutes = divmod(minutes, 60)

 days, hours = divmod(hours, 24)

 return (days, hours, minutes, seconds)

 req = datetime.datetime.strptime('2025-05-08 17:03:30', '%Y-

%m-%d %H:%M:%S')

 now = datetime.datetime.now()

 while req>now:

 countdown = "%dd %dh %dm %ds" %

daysHoursMinutesSecondsFromSeconds(dateDiffInSeconds(now, req))

 return (countdown)

 sleep(1)

 now = datetime.now()

 if countdown == "0d 0h 0m 0s":

 return("Fedding time")

24

 sleep(10)

 #funtion to read the depth

 def readdepth():

 #sensor output and input

 GPIO.setup(16, GPIO.OUT)

 GPIO.setup(26, GPIO.IN)

 #measure the distance

 GPIO.output(16, GPIO.HIGH)

 time.sleep(0.00001)

 GPIO.output(16, GPIO.LOW)

 while (GPIO.input(26)== GPIO.LOW):

 timestart = time.time()

 while (GPIO.input(26)== GPIO.HIGH):

 timeend = time.time()

 totaltime = timeend - timestart

 depth = totaltime * 17000

 depth = round(depth, 2)

 return depth

 #funtion to read the status of lamp

 def readlamp():

 lampSts = GPIO.input(lamp)

 return lampSts

 #funtion to display current time

 def daate():

 return datetime.datetime.now().strftime('%H:%M:%S')

 # Initialize display

 dc = digitalio.DigitalInOut(board.D23) # data/command

 cs1 = digitalio.DigitalInOut(board.CE1) # chip select CE1 for

display

 reset = digitalio.DigitalInOut(board.D24) # reset

 display = adafruit_pcd8544.PCD8544(spi, dc, cs1, reset, baudrate=

1000000)

 display.bias = 4

 display.contrast = 60

 display.invert = True

 # Clear the display. Always call show after changing pixels to

make the display update visible!

 display.fill(0)

 display.show()

 # Load default font.

25

 #font = ImageFont.load_default()

 font =

ImageFont.truetype("/usr/share/fonts/truetype/freefont/FreeSansBold.tt

f", 10)

 # Get drawing object to draw on image

 image = Image.new('1', (display.width, display.height))

 draw = ImageDraw.Draw(image)

 # Draw a white filled box to clear the image.

 draw.rectangle((0, 0, display.width, display.height), outline=255,

fill=255)

 #loop for displaying information

 while True:

 display.fill(0)

 display.show()

 draw.rectangle((0, 0, display.width, display.height),

outline=255, fill=255)

 draw.text((1,1), "Time: " + str(daate()), font=font)

 draw.text((1,9), "Lamp: " + str(readlamp()), font=font)

 draw.text((1,18), "Depth: " + str(readdepth()), font=font)

 draw.text((1,27), "Next fedding:", font=font)

 draw.text((1,36), str(countdown()), font=font)

 display.image(image)

 display.show()

 time.sleep(1)

5.3. Code for the web page: web.py

#import libraries

import cv2

import numpy

from flask import Flask, render_template, Response,

stream_with_context, request, redirect, url_for

import time

import RPi.GPIO as GPIO

import datetime

import psutil

import os

#set location mode

GPIO.setmode(GPIO.BCM)

#turn off warnings

GPIO.setwarnings(False)

#variable for the lamp pin

lamp = 5

26

#set lamp pin to output and high

GPIO.setup(lamp, GPIO.OUT)

GPIO.output(lamp, GPIO.LOW)

#initialize GPIO status variables

lampSts = 1

#starting the video

video = cv2.VideoCapture(0)

app = Flask('__name__')

#funtion for the video streaming

def video_stream():

 while True:

 ret, frame = video.read()

 if not ret:

 break;

 else:

 ret, buffer = cv2.imencode('.jpeg',frame)

 frame = buffer.tobytes()

 yield (b' --frame\r\n' b'Content-type:

imgae/jpeg\r\n\r\n' + frame +b'\r\n')

#set route for funtion to show the current time

@app.route("/camera")

def timeserver():

 now = datetime.datetime.now()

 timeString = now.strftime("%Y-%m-%d %H:%M")

 templateDate = {'time' : timeString}

 return render_template('camera.html',**templateDate)

#set route for funtion to read the light status

@app.route("/camera")

def lights():

 lampSts = GPIO.input(lamp)

 templateData = {

 'lamp' : lampSts

 }

 return render_template('camera.html', **templateData)

#set route for funtion of buttons in webpage to turn on and off the

lamp

@app.route("/<deviceName>/<action>")

def action(deviceName, action):

 if deviceName == 'lamp':

 actuator = lamp

 if action == "on":

 GPIO.output(actuator, GPIO.LOW)

 time.sleep(900)

 GPIO.output(actuator, GPIO.HIGH)

27

 if action == "off":

 GPIO.output(actuator, GPIO.HIGH)

 lampSts = GPIO.input(lamp)

 templateData = {

 'lamp' : lampSts

 }

 return render_template('camera.html', **templateData)

#route for the template

@app.route('/camera')

def camera():

 return render_template('camera.html')

#route to show streaming video

@app.route('/video_feed')

def video_feed():

 return Response(video_stream(), mimetype='multipart/x-mixed-

replace; boundary=frame')

#set rule to connect to webpage

app.run(host='0.0.0.0', port='5000', debug=False)

5.4. Template for web page: camera.html

<html>

 <head>

 <meta name="viewport" content="width=device-width, initial-

scale=1">

 <style>

 body {background:black;color: white}

 img {display: block;margin-left: auto;margin-right: auto;}

 h1 {text-align: center;}

 h2 {text-align: center;}

 button {font: bold 15px Arial;text-decoration:

none;background: darkcyan;color: white;padding: 2px 6px 2px 6px;

 border-top: 1px solid #CCCCCC;border-right: 1px solid

#333333;border-bottom: 1px solid #333333;

 border-left: 1px solid #CCCCCC;

 }

 button {background: darkcyan;color:white}

 </style>

 </head>

 <body>

 <h1>Teletubbies Home</h1>

 <h2>Surveillance Camera</h2>

 <h2>Server Time: {{ time }}</h2>

 <h3>

 <button>TURN ON LAMP</button>

 <button>TURN OFF LAMP</button>

28

 </h3>

 <img id="bg" src="{{ url_for('video_feed') }}"

style="width:88%;">

 </body>

</html>

5.5. Code for main program: main.py

#import libraries

from allforone import pumpwater,feeding,lamp,status

from multiprocessing import Process

from lcd import lcd

from web import webtst

if __name__ == "__main__":

 #set variables for funtions

 w = Process(target=pumpwater)

 f = Process(target=feeding)

 l = Process(target=lamp)

 s = Process(target=status)

 d = Process(target=lcd)

 t = Process(target=webtst)

 #starting funtions

 t.start()

 w.start()

 f.start()

 l.start()

 s.start()

 d.start()

 #joining the funtions

 t.join()

 w.join()

 f.join()

 l.join()

 s.join()

 d.join()

29

6. Additional Set up

For this project I bought 4 golden fishes and named them as the

Teletubbies characters:

• Po

• Tinky-Winky

30

• Laa-laa

• Dipsy

31

7. Pictures of project

32

33

34

