MORC

CAMPUS

SRS
o

?\
4
‘?4 ERY

Individual Project
IT essentials 1ITF

Pierina Lopez 1ACS-1
r0913865

Technology

Elektronics-ICT / Applied informatics
IT essentials

Course unit: IT essentials

Educational activity: IT essentials

First tier

Academiejaar 2022-2023

Table of contents

Content

Table of CONEENES v 3
Weather Stationccciiciiiiiiicsiic s rre v v s s s s s a s nrnnmn e 4
1.1 [1 <E ol o) o] o 4
1.2 L F= 10 1YY 5
1.3 Software and Platforms ... 8
2. Y= a1 o 3 o ool =T 11 | /=T 8
2.1, TRE COAE i 10
REFERENCES ...c.cctiitiiiitismra s sras s ssasssasssasssasssasssnnssnnssnnsnnnsnnnnns 16
3. YOUEUDE URL L.ttt i s it et s e e s riae e aaas 16
4, Self evaluation ..o e 16

Weather Station

1.1 Description

With this Weather Station, it is possible to messure: Temperature, Pressure,
and the light in the place the devices are, for the display of this information
we use a web site, to show current data and the Ubidots platform to show

historical data and send email notifications.

Weather Station

Pierina Lopez

SENSOR VALUE

Temp. Celsius 22.18*C
Pressure 1008.95 hPa

Light 379.17 lux

Figure 1 Screenshot of web page

3 2022 Dec 24 2022 Dec 24 2022 Dec 24 2022
23:56 00:00 00:10 00:20

prXul
Dec 23 2022 Dec 24 2022 Dec 24 2022 Dec 24 2022
23:56 00:00 00:10 00:20

1,011.34
1,011.00

1,010.50
2 1,01000
1,009.50
1,009.00
1,008.50
Dec 23 2022 Dec 24 2022 Dec 24 2022 Dec 24 2022
2356 00:00 00:10 00:20

Figure 2 Screenshot of Ubidots

lux alert! Inbox x

0 Notifications Ubidots
. Hey there, lux was 449 167 at 2022-12-24 00:24:46 +0100.

o Notifications Ubidots <service@ubidots.com>

. tome »

Hey there, lux was 374.167 at 2022-12-24 00:56:11 +0100.

Figure 3 Screenshot of email notifications

1.2 Hardware

To build the Weather Station we need the following:

- ESP32

Figure 4 Obtain from https://www.rpibolt.hu/Adafruit-Feather-HUZZAH-ESP32-WiFi-BLE

- Micro USB cable

https://www.rpibolt.hu/Adafruit-Feather-HUZZAH-ESP32-WiFi-BLE

Figure 5 Obtain from https://iotessentials.be/product/componenten-pakket,

- Jumper cables M-M

Figure 6 Obtain from https://articulo.mercadolibre.com.mx/MLM-594531233-cable-jumpers-
dupont-m-m-65-pzas-protoboard-arduino-_JM

- Breadboard

https://iotessentials.be/product/componenten-pakket/

Figure 7 Obtain from https://iotessentials.be/product/componenten-pakket/

BH1750 // Light sensor

Figure 8 Obtain from https://iotessentials.be/product/componenten-pakket/

BMP280 // Temperature and pressure sensor

Figure 9 Obtain from https://iotessentials.be/product/componenten-pakket/

7

1.3 Software and Platforms

For the project we use the tools provide in class, such as:

- Visual Studio Code
- PlatformIO

@ PIO Home X _
(@)

& ¥ FollowUs |[# | | ©) 2

Welcome to

Quick Access

+ New Project

=2 Import Arduino Projec

Figure 10 Screenshot of PlatformIO in VS Code

The primary language we use was C++, also for the website we use HTML
and CSS.

Additional to this we use Ubidots platform as mention before.

2. Setup Procedure

After getting the materials, the next step is to get ready to code, but before,
we need the sofware, after installing “VS CODE” and “PlatformIO”, we will

need the following libraries:

Adafruit BMP280 Library
BH1750

PubSubClient

Ubidots ESP MQTT Library

For a fast and easy install of this libraries, after creating your project, go to

platformio.ini

v WEATHER STATION

v .pio
2 build
~ libdeps\ featheresp32

Adafruit BMP28O Library
> AdafuitBusio
Adafruit Unified Sensor
BH1750
esp32-mqtt-main
PubSubClient
integrity.dat
> .vscode
? include
> lib
“v sIC
€+ main.cpp
> test
.gitignore

@ platformio.ini

Figure 11 Screenshot of VS Code
Copy and Paste this lines:

lib deps =
adafruit/Adafruit BMP28@ Library @ ~2.6.6
adafruit/Adafruit BMP280 Library @ ~2.6.6
adafruit/Adafruit BMP280 Library @ 2.6.6
claws/BH1750 @ ~1.3.0

claws/BH1750 @ ~1.3.0
claws/BH1750 @ 1.3.0
knolleary/PubSubClient @ ~2.8
knolleary/PubSubClient @ ~2.8
knolleary/PubSubClient @ 2.8

For the Ubidots ESP MQTT Library, you will need to do other procedure,

download the library with this link:

https://qgithub.com/ubidots/esp32-matt/archive/refs/heads/main.zip

nw N/

pio
“featheresp32” and paste the directory “esp32-mqtt-main”.

Go to the project Directory, the open directory,

“libdeps”,

https://github.com/ubidots/esp32-mqtt/archive/refs/heads/main.zip

Now for the connection requiered this is what we have done:

Figure 12 Obtain with Fritzing

Ubidots:

You need to create an account and copy the the token id, that you will need

for the code.

2.1. The code

// Include Libraries
#include <WiFi.h>

#include <Wire.h>

#include <Adafruit_ BMP280.h>
#include <BH1750.h>

#include "UbidotsEsp32Mqgtt.h"

#define SEALEVELPRESSURE_HPA (1013.25)
Adafruit_BMP280 bmp; // I2C

BH1750 lightMeter; // I2C

// Network credentials

const char* ssid = "SSID";

const char* password = "PASS";

// Set web server port number to 80
WiFiServer server(80);

// Variable to store the HTTP request
String header;

// Current time

unsigned long currentTime = millis();
// Previous time

unsigned long previousTime = 0;

// Define timeout time in milliseconds (example: 2000ms = 2s)
const long timeoutTime = 2000;

// Ubidots Variables - Define Constants

const char *UBIDOTS_TOKEN = "TOKEN"; // Put here your Ubidots
TOKEN

const char *DEVICE_LABEL = "ESP32"; // Put here your Device
label to which data will be published

const char *VARIABLE_LABEL1 = "Lux"; // Put here your Variable
label to which data will be published

const char *VARIABLE_LABEL2 = "Celsius"; // Put here your Variable
label to which data will be published

const char *VARIABLE_LABEL3 = "hPa"; // Put here your Variable
label to which data will be published

const int PUBLISH_FREQUENCY = 5000; // Update rate in milliseconds

unsigned long timer; //set variable for publishing time
Ubidots ubidots(UBIDOTS_ TOKEN);
// Auxiliar Functions

void callback(char *topic, byte *payload, unsigned int length)
{

Serial.print("Message arrived [");

Serial.print(topic);

Serial.print("] ");

for (int 1 = @; i < length; i++)

{

Serial.print((char)payload[i]);

}

Serial.println();
}
// setup function, where we initialize variables
void setup() {

Serial.begin(96090);

Wire.begin();

lightMeter.begin();

// check status of BMP280 SENSOR

bool status;

if (!'bmp.begin(0x76)) {
Serial.println("Could not find a valid BMP280 sensor");
while (1);

}

//CONNECTING TO WIFI
Serial.print("Connecting to...");

Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");

}

// print IP adress from where we'll see webpage
Serial.println("");

Serial.println("IP address: ");
Serial.println("**copy/paste* ");
Serial.println(WiFi.localIP());

server.begin();

// initialize ubidots
ubidots.connectToWifi(ssid, password);
ubidots.setCallback(callback);
ubidots.setup();

ubidots.reconnect();

timer = millis();

// MAIN FUNCTION
void loop(){

// Connection to Ubidots
if (lubidots.connected())
{

ubidots.reconnect();
}
// setting variables to be print in ubidots
if ((millis() - timer) > PUBLISH_FREQUENCY) // triggers the
routine every 5 seconds
{
float lux = lightMeter.readLightLevel();
ubidots.add(VARIABLE_LABEL1, lux); // Insert your variable
Labels and the value to be sent
ubidots.add(VARIABLE LABEL2, bmp.readTemperature());
ubidots.add(VARIABLE_LABEL3, bmp.readPressure() / 100.0F);
ubidots.publish(DEVICE_LABEL);
timer = millis();
}
ubidots.loop();

// connecting to wifi and creating the webpage

WiFiClient client = server.available(); // reading the new
clients
// codition when user "client" open the webpage
if (client) {
currentTime = millis();
previousTime = currentTime;
// show that a new user is connected
Serial.println("New User.");
String currentlLine = ""; // collects data from user
// while loop for when user is connected
while (client.connected() && currentTime - previousTime <=
timeoutTime) {
currentTime = millis();
if (client.available()) {
char ¢ = client.read();
Serial.write(c);
header += c;
if (¢ == "\n") {

if (currentLine.length() == 0) {

// HTTP headers always start with a response code
(e.g. HTTP/1.1 200 OK)

// and a content-type so the client knows what's
coming, then a blank line:

// calling client to send http info

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println("Connection: close");

client.println();

// show HTML page

client.println("<!DOCTYPE html><html>");

client.println("<head><meta name=\"viewport\"
content=\"width=device-width, initial-scale=1\">");

client.println("<link rel=\"icon\" href=\"data:,\">");

client.println("<style>body { text-align: center;
font-family: Arial; background-color:#0F1923;color: #ECE8E1l;}");

client.println("hl { color:#FF4655; }");

client.println("table { border-collapse: collapse;
margin-left:auto; margin-right:auto; }");

client.println("th { padding: 12px; background-color:
#FF4655; color: #ECE8E1l; }");

client.println("tr { border: 1px solid #ddd; padding:
12px; }");

client.println("tr:hover { background-color: #@F1923;

s

client.println("td { border: none; padding: 12px; }"),;

client.println(".sensor { color:#ECE8E1l; font-weight:
bold; padding: 1px; }");

client.println(".sensor:hover { color:#ECE8E1;
background-color: #FF4655; font-weight: bold; padding: 1px; }");

// Styling with CSS

// creating table with information

client.println("</style></head><body><h1>ESP32
DATA</h1>");

client.println("</style></head><body><h3>Weather
Station</h3>");

client.println("</style></head><body><h4>Pierina
Lopez</h4>");

client.println("<table><tr><th>SENSOR</th><th>VALUE</t
h></tr>");

client.println("<tr><td>Temp. Celsius</td><td>");

client.println(bmp.readTemperature());

client.println(" *C</td></tr>");

client.println("<tr><td>Pressure</td><td>");

client.println(bmp.readPressure() / 100.0F);

client.println(" hPa</td></tr>");

client.println("<tr><td>Light</td><td>");

float lux = lightMeter.readlLightlLevel();

client.println(lux);

client.println(" lux");

client.println("</body></html>");

client.println();
break;
else {
currentlLine = 5
}
} else if (c != "\r'") {
currentlLine += c;

nn

// Clear the header variable
header = "";

// Close the connection
client.stop();
Serial.println("Client out.");

Serial.println("");

15

REFERENCES

- https://randomnerdtutorials.com/esp32-web-server-arduino-ide/

- https://help.ubidots.com/en/articles/748067-connect-an-esp32-

devkitc-to-ubidots-over-mgtt

3. Youtube URL

https://youtu.be/CUPVI6ACSKQ

4. Self evaluation

What Max Score Comment

Two I2C sensors on Serial 11 11 Both sensors working correctly
Monitor

Current data on esp32 web 3 3 Sensor Data shows in web page
page

Historical data on web 3 -

page (choose only 1

approach)

On ESP32 (2) -

In Cloud + deep (3) -

sleep

With MQTT + deep (3) 2 I have use Ubidots with MQTT, but

sleep not deep sleep

Extra (cumulative) 3

Style (1) 1

Sensor (1)

API (1) 1 From Ubidots, I can send email,
sms, telegram, etc. notification
about sensor data

Total 20 18

https://randomnerdtutorials.com/esp32-web-server-arduino-ide/
https://help.ubidots.com/en/articles/748067-connect-an-esp32-devkitc-to-ubidots-over-mqtt
https://help.ubidots.com/en/articles/748067-connect-an-esp32-devkitc-to-ubidots-over-mqtt
https://youtu.be/CUPVl6ACsKQ

