
 1

 Thomas More Kempen

C A M P U S

Geel

Technology

Elektronics-ICT / Applied informatics

IT essentials

Course unit: IT essentials

Educational activity: IT essentials

First tier

Pierina Lopez 1ACS-1

r0913865

Individual Project

IT essentials 1ITF

Academiejaar 2022-2023

 3

Table of contents

Content
Table of contents .. 3

Weather Station ... 4

1.1 Description .. 4

1.2 Hardware ... 5

1.3 Software and Platforms ... 8

2. Setup Procedure ... 8

2.1. The code ... 10

REFERENCES .. 16

3. Youtube URL .. 16

4. Self evaluation ... 16

Weather Station

1.1 Description

With this Weather Station, it is possible to messure: Temperature, Pressure,

and the light in the place the devices are, for the display of this information

we use a web site, to show current data and the Ubidots platform to show

historical data and send email notifications.

Figure 1 Screenshot of web page

Figure 2 Screenshot of Ubidots

 5

Figure 3 Screenshot of email notifications

1.2 Hardware

To build the Weather Station we need the following:

- ESP32

Figure 4 Obtain from https://www.rpibolt.hu/Adafruit-Feather-HUZZAH-ESP32-WiFi-BLE

- Micro USB cable

https://www.rpibolt.hu/Adafruit-Feather-HUZZAH-ESP32-WiFi-BLE

Figure 5 Obtain from https://iotessentials.be/product/componenten-pakket/

- Jumper cables M-M

Figure 6 Obtain from https://articulo.mercadolibre.com.mx/MLM-594531233-cable-jumpers-

dupont-m-m-65-pzas-protoboard-arduino-_JM

- Breadboard

https://iotessentials.be/product/componenten-pakket/

 7

Figure 7 Obtain from https://iotessentials.be/product/componenten-pakket/

- BH1750 // Light sensor

Figure 8 Obtain from https://iotessentials.be/product/componenten-pakket/

- BMP280 // Temperature and pressure sensor

Figure 9 Obtain from https://iotessentials.be/product/componenten-pakket/

1.3 Software and Platforms

For the project we use the tools provide in class, such as:

- Visual Studio Code

- PlatformIO

Figure 10 Screenshot of PlatformIO in VS Code

The primary language we use was C++, also for the website we use HTML

and CSS.

Additional to this we use Ubidots platform as mention before.

2. Setup Procedure

After getting the materials, the next step is to get ready to code, but before,

we need the sofware, after installing “VS CODE” and “PlatformIO”, we will

need the following libraries:

- Adafruit BMP280 Library

- BH1750

- PubSubClient

- Ubidots ESP MQTT Library

For a fast and easy install of this libraries, after creating your project, go to

platformio.ini

 9

Figure 11 Screenshot of VS Code

Copy and Paste this lines:

lib_deps =

 adafruit/Adafruit BMP280 Library @ ^2.6.6

 adafruit/Adafruit BMP280 Library @ ~2.6.6

 adafruit/Adafruit BMP280 Library @ 2.6.6

 claws/BH1750 @ ^1.3.0

 claws/BH1750 @ ~1.3.0

 claws/BH1750 @ 1.3.0

 knolleary/PubSubClient @ ^2.8

 knolleary/PubSubClient @ ~2.8

 knolleary/PubSubClient @ 2.8

For the Ubidots ESP MQTT Library, you will need to do other procedure,

download the library with this link:

https://github.com/ubidots/esp32-mqtt/archive/refs/heads/main.zip

Go to the project Directory, the open “.pio” directory, “libdeps”,

“featheresp32” and paste the directory “esp32-mqtt-main”.

https://github.com/ubidots/esp32-mqtt/archive/refs/heads/main.zip

Now for the connection requiered this is what we have done:

Figure 12 Obtain with Fritzing

Ubidots:

You need to create an account and copy the the token id, that you will need

for the code.

2.1. The code

// Include Libraries

#include <WiFi.h>

#include <Wire.h>

#include <Adafruit_BMP280.h>

#include <BH1750.h>

#include "UbidotsEsp32Mqtt.h"

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BMP280 bmp; // I2C

BH1750 lightMeter; // I2C

// Network credentials

const char* ssid = "SSID";

const char* password = "PASS";

// Set web server port number to 80

WiFiServer server(80);

// Variable to store the HTTP request

String header;

// Current time

unsigned long currentTime = millis();

// Previous time

 11

unsigned long previousTime = 0;

// Define timeout time in milliseconds (example: 2000ms = 2s)

const long timeoutTime = 2000;

// Ubidots Variables - Define Constants

const char *UBIDOTS_TOKEN = "TOKEN"; // Put here your Ubidots

TOKEN

const char *DEVICE_LABEL = "ESP32"; // Put here your Device

label to which data will be published

const char *VARIABLE_LABEL1 = "Lux"; // Put here your Variable

label to which data will be published

const char *VARIABLE_LABEL2 = "Celsius"; // Put here your Variable

label to which data will be published

const char *VARIABLE_LABEL3 = "hPa"; // Put here your Variable

label to which data will be published

const int PUBLISH_FREQUENCY = 5000; // Update rate in milliseconds

unsigned long timer; //set variable for publishing time

Ubidots ubidots(UBIDOTS_TOKEN);

// Auxiliar Functions

void callback(char *topic, byte *payload, unsigned int length)

{

 Serial.print("Message arrived [");

 Serial.print(topic);

 Serial.print("] ");

 for (int i = 0; i < length; i++)

 {

 Serial.print((char)payload[i]);

 }

 Serial.println();

}

// setup function, where we initialize variables

void setup() {

 Serial.begin(9600);

 Wire.begin();

 lightMeter.begin();

 // check status of BMP280 SENSOR

 bool status;

 if (!bmp.begin(0x76)) {

 Serial.println("Could not find a valid BMP280 sensor");

 while (1);

 }

 //CONNECTING TO WIFI

 Serial.print("Connecting to...");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 // print IP adress from where we'll see webpage

 Serial.println("");

 Serial.println("IP address: ");

 Serial.println("**copy/paste* ");

 Serial.println(WiFi.localIP());

 server.begin();

 // initialize ubidots

 ubidots.connectToWifi(ssid, password);

 ubidots.setCallback(callback);

 ubidots.setup();

 ubidots.reconnect();

 timer = millis();

}

// MAIN FUNCTION

void loop(){

 // Connection to Ubidots

 if (!ubidots.connected())

 {

 ubidots.reconnect();

 }

 // setting variables to be print in ubidots

 if ((millis() - timer) > PUBLISH_FREQUENCY) // triggers the

routine every 5 seconds

 {

 float lux = lightMeter.readLightLevel();

 ubidots.add(VARIABLE_LABEL1, lux); // Insert your variable

Labels and the value to be sent

 ubidots.add(VARIABLE_LABEL2, bmp.readTemperature());

 ubidots.add(VARIABLE_LABEL3, bmp.readPressure() / 100.0F);

 ubidots.publish(DEVICE_LABEL);

 timer = millis();

 }

 ubidots.loop();

// connecting to wifi and creating the webpage

 13

 WiFiClient client = server.available(); // reading the new

clients

 // codition when user "client" open the webpage

if (client) {

 currentTime = millis();

 previousTime = currentTime;

 // show that a new user is connected

 Serial.println("New User.");

 String currentLine = ""; // collects data from user

 // while loop for when user is connected

 while (client.connected() && currentTime - previousTime <=

timeoutTime) {

 currentTime = millis();

 if (client.available()) {

 char c = client.read();

 Serial.write(c);

 header += c;

 if (c == '\n') {

 if (currentLine.length() == 0) {

 // HTTP headers always start with a response code

(e.g. HTTP/1.1 200 OK)

 // and a content-type so the client knows what's

coming, then a blank line:

 // calling client to send http info

 client.println("HTTP/1.1 200 OK");

 client.println("Content-type:text/html");

 client.println("Connection: close");

 client.println();

 // show HTML page

 client.println("<!DOCTYPE html><html>");

 client.println("<head><meta name=\"viewport\"

content=\"width=device-width, initial-scale=1\">");

 client.println("<link rel=\"icon\" href=\"data:,\">");

 client.println("<style>body { text-align: center;

font-family: Arial; background-color:#0F1923;color: #ECE8E1;}");

 client.println("h1 { color:#FF4655; }");

 client.println("table { border-collapse: collapse;

margin-left:auto; margin-right:auto; }");

 client.println("th { padding: 12px; background-color:

#FF4655; color: #ECE8E1; }");

 client.println("tr { border: 1px solid #ddd; padding:

12px; }");

 client.println("tr:hover { background-color: #0F1923;

}");

 client.println("td { border: none; padding: 12px; }");

 client.println(".sensor { color:#ECE8E1; font-weight:

bold; padding: 1px; }");

 client.println(".sensor:hover { color:#ECE8E1;

background-color: #FF4655; font-weight: bold; padding: 1px; }");

 // Styling with CSS

 // creating table with information

 client.println("</style></head><body><h1>ESP32

DATA</h1>");

 client.println("</style></head><body><h3>Weather

Station</h3>");

 client.println("</style></head><body><h4>Pierina

Lopez</h4>");

 client.println("<table><tr><th>SENSOR</th><th>VALUE</t

h></tr>");

 client.println("<tr><td>Temp. Celsius</td><td><span

class=\"sensor\">");

 client.println(bmp.readTemperature());

 client.println(" *C</td></tr>");

 client.println("<tr><td>Pressure</td><td><span

class=\"sensor\">");

 client.println(bmp.readPressure() / 100.0F);

 client.println(" hPa</td></tr>");

 client.println("<tr><td>Light</td><td><span

class=\"sensor\">");

 float lux = lightMeter.readLightLevel();

 client.println(lux);

 client.println(" lux");

 client.println("</body></html>");

 client.println();

 break;

 } else {

 currentLine = "";

 }

 } else if (c != '\r') {

 currentLine += c;

 }

 }

 }

 // Clear the header variable

 header = "";

 // Close the connection

 client.stop();

 Serial.println("Client out.");

 Serial.println("");

 }

}

 15

REFERENCES

- https://randomnerdtutorials.com/esp32-web-server-arduino-ide/

- https://help.ubidots.com/en/articles/748067-connect-an-esp32-

devkitc-to-ubidots-over-mqtt

3. Youtube URL

https://youtu.be/CUPVl6ACsKQ

4. Self evaluation

What Max Score Comment

Two I2C sensors on Serial

Monitor

11 11 Both sensors working correctly

Current data on esp32 web

page

3 3 Sensor Data shows in web page

Historical data on web

page (choose only 1

approach)

3 -

On ESP32 (2) -

In Cloud + deep

sleep

(3) -

With MQTT + deep

sleep

(3) 2 I have use Ubidots with MQTT, but

not deep sleep

Extra (cumulative) 3

Style (1) 1

Sensor (1)

API (1) 1 From Ubidots, I can send email,

sms, telegram, etc. notification

about sensor data

Total 20 18

https://randomnerdtutorials.com/esp32-web-server-arduino-ide/
https://help.ubidots.com/en/articles/748067-connect-an-esp32-devkitc-to-ubidots-over-mqtt
https://help.ubidots.com/en/articles/748067-connect-an-esp32-devkitc-to-ubidots-over-mqtt
https://youtu.be/CUPVl6ACsKQ

